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ABSTRACT

Partial update (PU) Euclidean direction search (EDS) algo-

rithms have been developed to reduce the computational com-

plexity of the full-update EDS. In this paper, the PU EDS is

modified to achieve better performance. The performance is

analyzed for a time-invariant system and for a time-varying

system. Theoretical steady-state mean and MSE results of

the modified PU EDS are derived for both time-invariant sys-

tem and time-varying system. Computer simulations are pre-

sented to support the theoretical analyses. The modified PU

EDS can achieve similar performance to the full update EDS

while reducing the computational complexity significantly.

The performance of the modified PU EDS is also compared

with the PU recursive least squares (RLS) algorithm and the

PU conjugate gradient (CG) in computer simulations. The

performance of modified PU EDS is comparable to PU RLS,

and it needs less computational cost.

1. INTRODUCTION

Adaptive filters play an important role in fields related to

digital signal processing such as system identification, noise

cancellation, and channel equalization. In the real world, the

computational complexity of an adaptive filter is an important

consideration for applications which need long filters. Usu-

ally, least squares algorithms, such as recursive least squares

(RLS), Euclidean direction search (EDS) [1], and conjugate

gradient (CG), have higher computational complexity and

give better convergence performance than steepest-descent

algorithms. Therefore, a tradeoff must be made between

computational complexity and performance. To reduce the

computational complexity, one option is to use partial update

techniques [2]. The partial update adaptive filter only updates

part of the coefficient vector instead of updating the entire

vector. The theoretical results of the full-update case may

not apply to the partial update case. Therefore, performance

analysis of the partial update adaptive filter is very meaning-

ful. In the literature, there are few studies for partial update
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least squares algorithms. In [3], the mean and mean-square

performance of the MMax RLS has been analyzed for white

inputs. In [4], the tracking performance has been analyzed

for MMax RLS. In [5], partial update techniques have been

applied to the CG algorithm. The mean and mean-square

performance of different PU CG algorithms were analyzed in

a time-invariant system. In [6], the tracking performance of

MMax CG was analyzed. In [8], the mean and mean-square

performance of PU EDS were studied. However, the MMax,

sequential, and stochastic EDS do not converge to the same

steady-state mean-square-error (MSE) as the full update EDS.

In this paper, the PU EDS is modified to achieve bet-

ter performance. Theoretical steady-state mean and MSE re-

sults of the modified PU EDS are derived for both the time-

invariant system and time-varying system. Computer simula-

tion results are also presented to show the performance of the

modified PU EDS. The performance of the MMax EDS is also

compared with the full-update EDS, full-update RLS, MMax

RLS, CG, and MMax CG. The analysis of time-varying sys-

tems is necessary because the unknown systems in system

identification, echo cancellation, and channel equalization are

often time-varying in real world applications. This paper is

organized as follows. In Section 2, the modified PU EDS

algorithms are derived. The mean and MSE results of the

modified PU EDS for a time-invariant system are derived in

Section 3. The MSE results of the PU EDS for a time-varying

system are derived in Section 4. In Section 5, computer sim-

ulation results are shown.

2. PARTIAL UPDATE EDS

The partial update EDS is briefly reviewed in this section. A

system identification model is shown in Figure 1. It can be

written as

d(n) = xT (n)wo + v(n), (1)

where d(n) is the desired signal, x(n) = [x(n), x(n −
1), ..., x(n−N+1)]T is the input data vector of the unknown

system, wo = [wo
1
, wo

2
, ..., wo

N ]T is the impulse response vec-

tor of the unknown system, and v(n) is zero-mean white
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noise, which is independent of any other signal. In a station-

ary environment, wo is time-invariant. In a non-stationary

environment, wo is time-varying.

Fig. 1. System identification model.

Let w be the coefficient vector of an adaptive filter. The

estimated signal y(n) is defined as

y(n) = xT (n)w(n− 1), (2)

and the output signal error is defined as

e(n) = d(n)− xT (n)w(n− 1). (3)

The EDS algorithm solves the same least-squares cost

function as the RLS and CG. It aims to minimize the cost

function

J(n) =
1

2
wT (n)Qw(n)− rTw(n), (4)

where Q = E{x(n)xT (n)} is the autocorrelation matrix

of the input data vector x(n) and r = E{x(n)d(n)} is the

cross-correlation vector between the input data vector x(n)
and the desired signal d(n). Unlike RLS, the EDS minimizes

the cost function using the simplest direction search method

– Euclidean direction search [1] to avoid matrix inversion

and reduce the computational complexity. The partial update

method aims to reduce the computational cost of the adap-

tive filters. Instead of updating all of the N × 1 coefficients,

it usually only updates M × 1 coefficients, where M < N .

EDS algorithm uses Q(n) and r(n) to estimate the autocor-

relation matrix Q and crosscorrelation vector r. Calculation

of Q(n) results in high computational cost. To reduce the

computational complexity, the partial update estimated auto-

correlation matrix Q̃(n) is used.

The modified partial update EDS has the uniform update

equation

w(n+ 1) = w(n)−
ggT (Q̃(n)w(n)− r̂(n))

gT Q̃(n)g
, (5)

where

Q̃(n) =

n∑

i=1

λn−ix(i)x̂T (i), (6)

r̂(n) =
n∑

i=1

λn−ix̂(i)d(i), (7)

x̂ = IMx, (8)

IM (n) =




i1(n) 0 . . . 0

0 i2(n)
. . .

...
...

. . .
. . . 0

0 . . . 0 iN (n)



, (9)

N∑

k=1

ik(n) = M, ik(n) ∈ {0, 1}, (10)

the N × 1 vector g is the search direction at iteration n,

which is taken to be “Euclidean directions.” It is defined as

gi = [0, · · · , 0, 1, 0, · · · , 0]T , where the 1 appears in the i-th

position. At each iteration n, the entire weight vector w(n)
is updated by cycling through all the Euclidean directions

gi, i = 1, 2, · · · , N [7]. The forgetting factor 0 < λ < 1
gives exponentially less weight to previous samples. Unlike

the PU EDS in [8], the PU estimated autocorrelation ma-

trix is modified to Q̃(n) =
∑n

i=1
λn−ix(i)x̂T (i) instead of

Q̂(n) =
∑n

i=1
λn−ix̂(i)x̂T (i). Although the modified PU

EDS requires a slight bit more in computational costs than the

original PU EDS, the performance is improved significantly.

The modified PU EDS can achieve similar steady-state MSE

to the full update EDS. Note, the calculation of output signal

error still uses the the whole input vector, not the subselected

input vector. Basic partial update methods including sequen-

tial PU, stochastic PU, and MMax method are applied to EDS.

The sequential PU method chooses the input vector subsets in

a round-robin fashion. The stochastic PU method chooses

the input vector subsets randomly. Usually a uniformly dis-

tributed random process will be applied. The MMax EDS

selects the input vector according to the M greatest entries of

the input vector x in absolute value. The sorting of the input

x increases the computational complexity. The sorting result

can be achieved more efficiently by using the SORTLINE or

Short-sort methods [9]. If the SORTLINE method is used,

the MMax EDS needs 2 + 2 ⌈log2N⌉ comparisons. The total

number of multiplications needed for the uniform PU EDS is

N2 +2NM +N +2M . The original EDS needs 3N2 +3N
[1] multiplications. If M is much smaller than N , then the

number of multiplications can be reduced significantly for PU

EDS.
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3. PERFORMANCE OF MODIFIED PARTIAL

UPDATE EDS FOR TIME-INVARIANT SYSTEM

The mean behavior of the modified PU EDS weights can be

determined by multiplying a scalar gT Q̃(n)g to both sides of

(5) and taking the expectation

E{gT Q̃(n)gw(n+ 1)} = E{gT Q̃(n)gw(n)}

− E{ggT (Q̃(n)w(n)− r̂(n))}. (11)

Assume Q̃(n) and w(n) are uncorrelated to each other. ggT

is just direction and is uncorrelated to Q̃(n) and r̂(n). At

steady state, E{gT Q̃(n)gw(n+1)} = E{gT Q̃(n)gw(n)}.

Therefore, (11) can be simplified to

E{ggT }E{Q̃(n)}E{w(n)} = E{ggT }E{r̂(n)}. (12)

At steady state, E{Q̃(n)} = 1

1−λ
Q̃ and E{r̂(n)} = 1

1−λ
r̂,

where Q̃ = E{x(n)x̂T (n)} and r̂ = E{x̂(n)d(n)}. If the

inversion of Q̃ exists, the mean weights of the modified PU

EDS converge to

E{w(n)} = Q̃−1r̂ n → ∞. (13)

For the MMax method Q̃ is close to that of the full update

method. For the sequential and stochastic methods, Q̃ is dif-

ferent from that of the full update method. The inversion of Q̃

does not always exist, especially when the PU length is small.

The coefficient error vector is defined as

z(n) = w(n)−wo. (14)

To derive the MSE performance at steady state, three as-

sumptions are needed: (1) Inversion of Q̃ exists; (2) at steady

state, the coefficient error vector z(n) is very small and is in-

dependent of the input signal x(n); (3) the input signal x(n)
is independent of noise v(n).

Define the weight error correlation matrix as

K(n) = E{z(n)zT (n)}. (15)

Using the assumptions, the MSE equation of the PU EDS al-

gorithm at steady state becomes

E{|e(n)|2} = σ2

v + tr(QK(n)), (16)

where Q is the autocorrelation matrix of the input x.

At steady state, the coefficient vector is approximate to

w(n) ≈ Q̃−1(n)r̂(n). (17)

Assuming a slow adaptive process (λ is very close to unity),

Q̃(n) becomes [10]

Q̃(n) ≈
Q̃

1− λ
n → ∞. (18)

The coefficient vector is further approximated to

w(n) ≈ (1− λ)Q̃−1r̂(n)

= λw(n− 1) + (1− λ)Q̃−1x̂(n)xT (n)wo

+ (1− λ)Q̃−1x̂(n)v(n). (19)

Subtracting wo from both sides of (19), using (14) and the

direct-averaging method [10], we get

z(n) ≈ λz(n− 1) + (1− λ)Q̃−1x̂(n)v(n). (20)

Note, the term (1 − λ)Q̃−1x̂(n)xT (n)wo in (19) becomes

(1− λ)Q̃−1E{x̂(n)xT (n)}wo = (1− λ)wo after using the

direct-averaging method.

Since the input noise is assumed to be white,

E{v(i)v(j)} =

{
σ2

v for i = j

0 otherwise
. (21)

K(n) becomes

K(n) ≈ λ2K(n− 1)

+ σ2

v(1− λ)2E{Q̃−1x̂(n)x̂T (n)Q̃−T } (22)

At steady state K(n) ≈ K(n− 1), therefore K(n) becomes

K(n) ≈
1− λ

1 + λ
σ2

vQ̃
−1E{x̂(n)x̂T (n)}Q̃−T . (23)

The MSE equation becomes

E{|e(n)|2} ≈ σ2

v + tr(Q(
1− λ

1 + λ
σ2

vQ̃
−1Q̂Q̃−T )), (24)

where tr(·) is the trace operator and Q̂ = E{x̂(n)x̂T (n)}.

For a white input signal with variance σ2

x, the MSE can be

simplified as

E{|e(n)|2} ≈ σ2

v +
N(1− λ)

1 + λ
σ2

vσ
2

xσ
2

x̂σ
−4

x̃
, (25)

where σ2

x̂I = E{x̂(n)x̂T (n)} and σ−2

x̃
I = Q̃−1.

For the PU method and a white input signal, σ2

x̂ ≈ κσ2

x

and σ2

x̃ ≈ κσ2

x, where κ is smaller than 1 and is close to 1.

Therefore, the MSE can be further simplified as

E{|e(n)|2} ≈ σ2

v +
N(1− λ)

(1 + λ)κ
σ2

v . (26)

4. PERFORMANCE OF MODIFIED PARTIAL

UPDATE EDS FOR TIME-VARYING SYSTEM

In a non-stationary environment, the unknown system is time-

varying. The desired signal can be rewritten as

d(n) = xT (n)wo(n) + v(n). (27)
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A first-order Markov model [10] is used for the time-varying

unknown system. It has the form

wo(n) = γwo(n− 1) + η(n), (28)

where γ is a fixed parameter of the model and is assumed to

be very close to unity. η(n) is the process noise vector with

zero mean and correlation matrix Qη .

The coefficient error vector for the time-varying system is

defined as

z(n) = w(n)−wo(n). (29)

To determine the tracking performance of the modified par-

tial update EDS, two more assumptions are needed [10]: (1)

Noise v(n) has zero mean and variance σ2

v , and is indepen-

dent of the noise η(n); (2) the input signal x(n) is indepen-

dent of both noise v(n) and noise η(n).
Using the same derivation steps as the time-invariant sys-

tem, the coefficient vector at steady state is approximated to

w(n) ≈ λw(n− 1) + (1− λ)Q̃−1x̂(n)xT (n)wo(n)

+ (1− λ)Q̃−1x̂(n)v(n). (30)

Subtracting wo(n) from both sides of (30), using (28) and

(29), using the direct-averaging method [10], and applying

the assumption that γ in (28) is very close to unity, we obtain

z(n) ≈ λz(n− 1)− λη(n) + (1− λ)Q̃−1x̂(n)v(n). (31)

K(n) becomes

K(n) ≈ λ2K(n− 1) + λ2Qη

+ σ2

v(1− λ)2E{Q̃−1x̂(n)x̂T (n)Q̃−T } (32)

At steady state K(n) ≈ K(n− 1), therefore K(n) becomes

K(n) ≈
1− λ

1 + λ
σ2

vQ̃
−1E{x̂(n)x̂T (n)}Q̃−T

+
λ2

1− λ2
Qη. (33)

The MSE equation becomes

E{|e(n)|2} ≈ σ2

v + tr(Q(
1− λ

1 + λ
σ2

vQ̃
−1Q̂Q̃−T

+
λ2

1− λ2
Qη)). (34)

For a white input signal with variance σ2

x, the MSE can be

simplified as

E{|e(n)|2} ≈ σ2

v +
N(1− λ)

1 + λ
σ2

vσ
2

xσ
2

x̂σ
−4

x̃

+
λ2

1− λ2
σ2

xtr(Qη). (35)

For the PU method and a white input signal, the MSE can

be further simplified as

E{|e(n)|2} ≈ σ2

v +
N(1− λ)

(1 + λ)κ
σ2

v +
λ2

1− λ2
σ2

xtr(Qη). (36)

Assume the process noise is white with variance σ2

η . Then,

the MSE of the modified PU EDS can be further simplified as

E{|e(n)|2} ≈ σ2

v +
N(1− λ)

(1 + λ)κ
σ2

v +
Nλ2

1− λ2
σ2

xσ
2

η. (37)

5. SIMULATIONS

5.1. Performance of the modified PU EDS for a time-

invariant system

The system identification model is shown in Figure 1. It is a

16-order FIR filter (N=16). The impulse response [11] is

wo = [0.01, 0.02,−0.04,−0.08, 0.15,−0.3, 0.45, 0.6,

0.6, 0.45,−0.3, 0.15,−0.08,−0.04, 0.02, 0.01]T . (38)

In our simulations, the lengths of the partial update filter

are M=8 and M=4. The variance of the input noise v(n) is

0.0001. The initial weights of the EDS are w = 0, the initial

autocorrelation matrix Q(0) = 0, and the crosscorrelation

vector r(0) = 0. The parameters λ is equal to 0.99. The

results are obtained by averaging 100 independent runs. Both

correlated input and white input are used. The correlated

input of the system [7] has the following form

x(n) = 0.8x(n− 1) + β(n), (39)

where β(n) was zero-mean white Gaussian noise with unit

variance.

Figure 2 and Figure 3 show the MSE performance of the

modified PU EDS for a time-invariant system with white in-

put, and for PU length M=8 and M=4, respectively. We can

see that all the PU EDS algorithms can converge the same

steady-state MSE as the full update EDS for M=8. The MMax

EDS has a converge rate close to the full update EDS. The se-

quential and stochastic methods have slightly higher steady-

state MSE than the full update EDS when the PU length is

M=4. The convergence rate of PU length M=4 is slower than

that of PU length M=8.

Figure 4 and Figure 5 show the MSE performance of the

modified PU EDS for a time-invariant system with correlated

input vector x, and for PU length M=8 and M=4, respectively.

We can see that the MMax EDS still has the best performance

among the different PU EDS algorithms. It can converge the

same steady state MSE as the full update EDS. The conver-

gence rate is also close to the full update EDS when M=8.

The PU EDS are not stable with PU length M=4.

Table 1 shows the simulated MSE and theoretical MSE

of PU EDS algorithms at steady state for white input. The
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Fig. 2. Comparison of MSE of modified PU EDS with white

input, M=8.
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Fig. 3. Comparison of MSE of modified PU EDS with white

input, M=4.
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Fig. 4. Comparison of MSE of modified PU EDS with corre-

lated input, M=8.
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Fig. 5. Comparison of MSE of modified PU EDS with corre-

lated input, M=4.

simulated results are obtained by taking the time average over

the last 1000 samples. The theoretical results are calculated

from (26). For full update EDS, κ = 1. We can see that the

simulated results match the theoretical results.

Table 1. The simulated MSE and theoretical MSE of PU EDS

for time-invariant system and white input.

Algorithms Simulated Theoretical

MSE (dB) MSE (dB)

EDS (N=16) -39.6617 -39.6641

MMax EDS (N=8) -39.6247 -39.6056

Sequential EDS (N=8) -39.2843 -38.8066

Stochastic EDS (N=8) -39.2953 -38.8116

MMax EDS (N=4) -39.5002 -39.3159

Sequential EDS (N=4) -38.3864 -36.3638

Stochastic EDS (N=4) -38.3792 -36.3640

5.2. Tracking performance of the PU EDS using the first-

order Markov model

The same system identification model for a time-invariant

system is used, except the weights are time-varying. The

first-order Markov model (28) is used for the time-varying

impulse response. The initial state of the impulse response is

(38). The parameter γ in the first Markov model is 0.9998.

The white process noise is used with difference variances.

The white input signal with unity variance is used.

Figure 6 and Figure 7 show the tracking performance of

the modified PU EDS with a different process noise ση =
0.001 and ση = 0.01 for M = 8. All PU EDS have similar

performance. We can see that the MSE of PU EDS increases

when the process noise increases. The variance of the MSE

also increases when the process noise increases. The same

situation also happens to the full-update EDS. Figure 8 and
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Figure 9 show the tracking performance of the modified PU

EDS with a different process noise ση = 0.001 and ση = 0.01
for M = 4. The partial update length does not have much

effect on the MSE results in this case. The partial update

length only affects the convergence rate. The convergence

rate decreases as the partial update length decreases.
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Fig. 6. Comparison of MSE of PU EDS with EDS for white

input, N=16, M=8, ση = 0.001.
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Fig. 7. Comparison of MSE of PU EDS with EDS for white

input, N=16, M=8, ση = 0.01.

Table 2 and Table 3 show the simulated MSE and theo-

retical MSE of PU EDS algorithms at steady state for white

input for process noise ση = 0.001 and ση = 0.01, respec-

tively. The simulated results are obtained by taking the time

average over the last 1000 samples. The theoretical results are

calculated from (37). The partial-update lengths are M = 8
and M = 4. We can see that the simulated results match the

theoretical results.
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Fig. 8. Comparison of MSE of PU EDS with EDS for white

input, N=16, M=4, ση = 0.001.
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Fig. 9. Comparison of MSE of PU EDS with EDS for white

input, N=16, M=4, ση = 0.01.

5.3. Tracking performance comparison of the MMax

EDS with the EDS, RLS, MMax RLS, CG, and MMax

CG

The tracking performance of the MMax EDS is also com-

pared with the full-update EDS, full-update RLS, MMax

RLS, full-update CG, and MMax CG. The same system

identification model is used. After 2000 samples/iterations

pass, the unknown system in (38) is changed by multiply-

ing all coefficients by -1. Figure 10 shows the MSE results

among EDS, MMax EDS, RLS, MMax RLS, CG, and MMax

CG when M = 4. White input is used. The results show

that these algorithms have a similar convergence rate af-

ter the unknown system is changed. The EDS and MMax

EDS have convergence rates very close to the full update

RLS. The SORTLINE sorting method is used for MMax

EDS, MMax RLS, and MMax CG. The total number of

multiplications of MMax EDS, MMax RLS, MMax CG are
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Table 2. The simulated MSE and theoretical MSE of PU EDS

for process noise ση = 0.001.

Algorithms Simulated Theoretical

MSE (dB) MSE (dB)

EDS (N=16) -29.9657 -30.4766

MMax EDS (M=8) -29.9571 -30.4699

Sequential EDS (M=8) -29.7107 -30.3654

Stochastic EDS (M=8) -29.6381 -30.3650

MMax EDS (M=4) -30.2689 -30.4349

Sequential EDS (M=4) -29.3666 -29.9289

Stochastic EDS (M=4) -29.2707 -29.9384

Table 3. The simulated MSE and theoretical MSE of PU EDS

for process noise ση = 0.001.

Algorithms Simulated Theoretical

MSE (dB) MSE (dB)

EDS (N=16) -10.7191 -11.0287

MMax EDS (M=8) -10.6829 -11.0286

Sequential EDS (M=8) -10.4600 -11.0273

Stochastic EDS (M=8) -10.4281 -11.0274

MMax EDS (M=4) -10.5673 -11.0282

Sequential EDS (M=4) -9.7506 -11.0221

Stochastic EDS (M=4) -9.6415 -11.0222

N2 + 2NM +N + 2M , 2N2 + 2NM + 3N +M + 1, and

2N2+M2+9N +M +3 , respectively. In this case, the full

update length N is 16. The partial update length M is 4. The

detailed computational complexities of these algorithms are

shown in Table 4. Overall, the EDS algorithms need fewer

multiplications than the RLS and CG. The results show that

the MMax EDS with M=4 can achieve similar tracking per-

formance to the full-update EDS and RLS while reducing the

computational complexity significantly.
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Fig. 10. Comparison of MSE of MMax EDS with EDS, RLS,

MMax RLS, CG, and MMax CG for white input, N=16, M=4.

Table 4. The computational complexities of EDS, MMax

EDS, RLS, MMax RLS, CG, and MMax CG.

Algorithms Number of Number of

multiplications comparisons

per symbol per symbol

EDS (N=16) 816 –

MMax EDS (M=4) 408 10

RLS (N=16) 3721 –

MMax RLS (M=4) 693 10

CG (N=16) 3003 –

MMax CG (M=4) 679 10

6. CONCLUSION

In this paper, the PU EDS is modified to achieve better perfor-

mance. The performance is analyzed for a time-invariant sys-

tem and for a time-varying system. Theoretical steady-state

mean and MSE results of the modified PU EDS are derived

for both the time-invariant system and time-varying system.

Simulation results agree with the derived theoretical results

in steady state. The PU EDS can reduce the computational

complexity significantly. The PU EDS can achieve compara-

ble performance to the full update EDS when the convergence

condition is satisfied. The tracking performance of the MMax

EDS is also compared with the full update EDS, full update

RLS, MMax RLS, full update CG, and MMax CG. The results

show that the MMax EDS can achieve similar tracking per-

formance to the full update EDS and full update RLS, while

reducing the computational complexity significantly.
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